I’ve been doing a lot of canvas stuff lately which reminded me of some things that I’ve always wanted to try. In particular I’ve always meant to find time to try writing a particle system using HTML5 Canvas.

Its pretty easy to do – the idea is that we render a shape or a number of shapes to a canvas using window.requestAnimationFrame to recalculate the positions of the particles it each iteration. Before each render to the canvas we wipe the canvas clean then render the shapes to their new locations. That’s all there is to it.

I wrote two experiments at creating a particle system – in one I had the particles take care of themselves separate from any thing else – they essentially moved themselves around the canvas. The second attempt has a system that updates all of the new particle coordinates before rendering them all to the canvas. There are some subtle differences and effects that can be achieved. In almost all cases the second “style” of updating the canvas is preferred.

Before we go any further I’m assuming that you are using a modern web browser – I’ve not bothered with supporting lesser browsers.

Experiment One

The methodology in this one is that each particle takes care of itself. That is, it calculates its own position within the canvas and writes itself to the canvas regardless of whatever else might be happening. The caveat here is that we always need to remove the previously rendered shape before plotting the new one else we end up drawing lines on the screen.

You might think that this would be easy to do as we always know the coordinate of the previous shape and can simply erase it. Shapes, however, are anti-aliased. The outer-most anti-aliased edge of the shape (a “ghost”) is always left behind when we attempt to erase only the portion of the canvas where the previously plotted shape was. You can enlarge the bounding area of the shape to be sure to remove all of it but then you see “empty borders” around shapes as they cross each other.

The point is that even though this looks cool its impractical for most purposes.

The first example doesn’t bother to erase the previously plotted shape. As a result we have a series lines – but lines that have opacity and compositing so that we end up with something cool.

The example on the right does attempt to erase the previously plotted shape but as I mentioned above you can still see the “ghost” of that previous shape which leaves a sort of trail behind it as it moves about the screen.

Experiment Two

This one approaches Canvas animation the way its usually done. First calculate the new position of all shapes, wipe the entire canvas clean, and then write all the shapes to the canvas, repeat.




I wont go through any exhaustive description of how to do things – the described workflow above and the source code below should be all that you need to give it a try for yourself.

;(function(ns){
	
	var _parts = [];
	var _cvs = null;
	var _ctx = null;
	var _bgColor = null;
	
	ns.setupParts = function(cvsID,bgColor){
		_cvs = document.getElementById(cvsID);
		_ctx = _cvs.getContext('2d');
		_bgColor = bgColor;
	}
	
	ns.addParts = function(o){
		_parts.push(o);
	}
	
	ns.updateCanvasWithParts = function(){
		_ctx.clearRect(0,0,_cvs.width,_cvs.height);
		if (_bgColor){
			_ctx.fillStyle = _bgColor;
			_ctx.fillRect(0,0,_cvs.width,_cvs.height);
		}
		for (var i=0;i<_parts.length;i++){
			_ctx.fillStyle = _parts[i].color;
			_ctx.globalCompositeOperation = _parts[i].comp;
			_ctx.globalAlpha = _parts[i].alpha;
			_ctx.fillRect(_parts[i].x, _parts[i].y,_parts[i].height,_parts[i].width);
			_parts[i].update();
		}
		requestAnimationFrame(ns.updateCanvasWithParts);
	}
	
	ns.particle = function(config){
		var that = this;
		this.vx = config.omni ? (Math.random() < 0.5 ? config.vx * -1: config.vx) : config.vx;
		this.vy = config.omni ? (Math.random() < 0.5 ? config.vy * -1: config.vy) : config.vy;
		this.x = config.x;
		this.y = config.y;
		this.originX = config.x;
		this.originY = config.y;
		this.starfield = config.starfield;
		this.color = config.color;
		this.bgColor = config.bgColor;
		this.alpha = config.alpha;
		this.comp = config.comp;
		this.size = config.size;
		this.height = config.uniform ? config.size : Math.round(Math.random() * config.size);
		this.width = config.uniform ? config.size : Math.round(Math.random() * config.size);
		this.update = function(){
			if (!that.starfield){
				if (that.x > _cvs.height - that.height){
					that.vx = that.vx * -1;
				} else if (that.x < 0){
					that.vx = Math.abs(that.vx);
				}
				if (that.y > _cvs.width - that.width){
					that.vy = that.vy * -1;
				} else if (that.y < 0){
					that.vy = Math.abs(that.vy);
				}
			} else {
				if (that.x > _cvs.height + that.size || that.y > _cvs.width + that.size ||
					that.x < -that.size || that.y < -that.size){
					that.x = that.originX;
					that.y = that.originY;
				}
			}				
			that.x = that.x + that.vx;
			that.y = that.y + that.vy;
		}
	}

})(this.particles2 = this.particles2 || {});

document.addEventListener('DOMContentLoaded', function(e){	
	particles2.setupParts('cvs1','#000');
	for (var i=0;i<500;i++){
		var color = Math.floor(Math.random()*16777215).toString(16);
		var p = new particles2.particle({
			color: '#' + color,
			comp: null,
			alpha:1,
			x:(Math.random() * 400),
			y:(Math.random() * 400),
			vx:(Math.random() * 2),
			vy:(Math.random() * 2),
			size:(Math.random() * 6),
			uniform: true,
			omni:false,
			starfield:false
		});
		particles2.addParts(p);
	}
	particles2.updateCanvasWithParts();
});